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The ultimate distritution of energy
in a spheriocal explosion

v e e 4

Ce Ko Thornhill- (B.') !

Sumary

\ Ultimately, at relatively large distances from the source, there ias some
similarity between the dlast waves from all explosions. Various authors have
demonstrated this mathematically, tut have not drswm attention to the fact that
their resulta are not entirely ocompatible with the olassioal hypothesis that,
ultimately, blast waves become less and less aware of the nature of the i
explosion and tend to depend only cn the magnitude of the energy release. ’

The same hypotheauis has been used to derive atmospheric soaling laws, which
therefore need altermative intexyretation if the hypothesis ia found to be
falne,

The ultimate flow behind a decaying spherioal shock is studied here from .
this point of view, It 13 concluded that the classical hypothesis is false, :
and 18 not ential to the mathematical similarity. It has been ahowm '
olasvhere A that it is also not essential to the atmospherio scaling rules. f

The theory developed in making these oconclusions suggests that the flow H
behind a spherical shock is divided into two parts by an inner sphere, such !

L ke e -

: . that the flow within this sphere has no influence on the decay of the shocke
;" The excess enorgy in the outer part increases indefinitely in proportion to
i the shock radius, and that within the inner sphere must therefore correspondingly

equal to the energy released by the explosion.

A hypothesis is suggested, in an attempt to obtain a higher order
asymptotic solution, for the blast wave, than the well-known form given by

previous suthors. This solution is compared fully with experimental
observations. )
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‘ decrease indefinitely since the total exceas energy must remain finite and |
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1. Introduction

It has long been known tlat, far away from the origin of explosion, there
is ultimtely some similarity ‘bemen the blast waves from all explosions,
whatever the sourve and nature of the energy release which originally initiated
them. Bethe [1] firat showed that, if R is the redius of a decaying
spherical shook, then, as R * =, the peak-overpressure behind the shock
ultinately bahyves aa (R 20g¥ R =", the Amation of positive overpressure
behaves as log n. und the impulse per unit ares in the positive overpressure
phase dehaves as R™ Kiriwood and Brinkley [2] developed a theory covering
the whole course of m explosion, based on a physical assunmption about energy,
which led to the same asymptotic form for large values of R, later,

Whithem [ 3] re-derived Bethe's results by an altermative approach, aimed, like
Bethe's method, at correcting the imperfections of the ‘aocoustio! nlution of
the problem of a deoaying shouk.

Both Bethe and Kirlwood and Brinkley define the energy of the shook wave,
as it orosses the sphe.e of redius R, as the nett work done on the
undisturbed atmosphere exterior to the sphere R. But only ty making
assumptions about the motion in the negative phase of the blast wave, and thus
assessing effectively the final nett amount of work done on the undisturbed
atmosphere extermal to the sphere of radius R, do they reach the conclusion
that this nett energy tends ultimately to zero as log"i‘ R when R 1is laxge,
thus indicating a very slow final dissipation of energy, a result first derived
.ty Penney [11]. None of these suthors has, however, drewn attention to the
diffioulties associated with oonsiderations of the irmediste energy
distribution behind a decaying spherical shock. If, instead of oonsidering
the total nett work done on the undisturbed atmosphere external to the sphere

1.
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R, the development of thi. energy with time is considered, it is found, at
onge, without any assmptions concerning the negative phase, that the work
done, up to the end of the positive overpressure phase, on the atmosphere
originally outside the sphere R, behaves as R when R is large, and thus
increases indefinitely as « increases, - This is a ourious result, amd,
despite the faot that such a curiocua energy situation must be restored ty a
negative phase, it is of the greatest importance to an unlerstanding of
explosion phenomena (particularly as applied to target rosponss) to axamine
the consequences of such an anomalous energy distritution, Whitham [ 3] does
not deal with energy consideratiors, tut in a later paper [12] he mentions a
similar anomaly, namely that the nass flowing from inside the aphere R to
outside the sphere R during the positive overpressure phase ultimately behaves
as R, and thus necessitates the existence of a negative 86 in whioh it can
return, Thes anomaly does not exist in plane one-dimensional flow; in thias
cnse the excess energy in the poaitive overpressure phase tends to a finite
quantity as R inoreases. In axially symmetric floy, the excess energy in the

positive overpressure phase behaves ultimately as R¥ when R is large,

In the absence of any real atteampt to face up to the difficulties of a
positive overrressure phass containing an indefinitely inoressing amount of
energy, continuing sppeal has tacitly been made to the classioal hypothesis of
exploaion theory, namely that, for large R, the motion behind a blast shook
becomes dependent dominantly on a finite quantity of energy assoclated with
the energy released Ly the explosion, and less and less on the nature and mode
of the energy releasa. The asymptotic results descrided above would orly be
compatible with such a hypothesis 1f the energy in the positive overpressure
phass tended to a finite non-gzero amount for large R, since, as will be shom
in this paper, the decay of a spherical shock is determined entirely hy the
motion in a limited region of flow just behind the shock, not much different
from the positive overpressure phase. The hypothesis is therefore now
believed to be false,

This same classical hypothesis has been used by Sachs {13] to derive
atmospheric scaling laws, though the same scaling laws were derived
previously hy Taylor [1&]'. close in to a very intense explosion [of. 10] on the
different hypothesis that the total excess energy within the spherical shock
is conserved, The present author [10] has shomn that Sachs' rule for
atmospheric soaling can be derived, aml generslised, without appeal to the
olassioal energy hypothesis, and that its preactical usefulness is not therefore
mllified by the falaity of the hypolhesias. 1Instead, Sachs' rule is aseen to
be not an asymptotic law, as firat derived, tut a rule for the ‘middle-~
distance' which is of far greater importance in practical appliocations.
Taylor's derivation of the atmospheric scaling rule, close in to a very intenss
explosion, also need:: further consideration, sinoe the high temperatures
assooiated with the hipgh energy release per unit volume of a very intense
explosion imply a high rate of losa of en from the system within the
spherioal shock bty thermal radiation [of. 15]. The derived atmospheric
scaling rules may therefore only be expeoted to apply spproximately, under the
oconditions of Taylor's similarity solution, over renges of R in which the
energy lost to the system hy thermal radiation is either small compered with
the total energy of the asystem, or scales consistently with the derived
sealing rules.

In the present paper, the equations of unatesdy non-homentropie
compreaaible flow with spherioal symmetry ave reduced to charncteristic form
(section 2), in terms of variables which are effectively the Riemamn functions
fur the corresponding plane flow. The boundary conditiona at a general
spherical shock front are derived in the ssms variables (section 3) and en
iterative nolution is developed. This method of solution was developed
independently, ut was found later to be similar to that used bty Bethe [1],
although the preaent solution is carried further than Bethe's solution.
Energy and impulse considerntions are introduced (section L), to derive the
limitationa on the form of the ahock decay, anl the resulta derived are in
accord with previous resmulta described above, but are taken to higher order
approximationa. The existence of a limiting charcoteriatic or wave-front,

2,




behind the leading shook, is demonstrated (section 5), as was also done
previously by Whitham, namely the first positive charmoteristic which fails to
overtake the shook in finite distance. This marks the resx of what is defined
here as the shock decay phase of the motion, for it divides the flow behind the
shock into two parts, a spherical annulus (between the shock and the limiting
charscteristic) which alone controls the decay of the shock, and, inside it, a
spherical region which camnot influence the shock decay process. The previous
results (of section 4) then show that, although the total excess energy within
the 1 ‘shock is always finite and equal to the energy released by the
explosion (lesa possible radiation losses), its components, in the two regions
defined above, respectively increass and decrease indefinitely in proportion to
R, when R is large, and thus contradict the classical hypothesis that the flow
in the shock decay phase immediately behind the leading ahock is determined
dominantly by a finite quantity of energy.

The diffioulties of obtaining a higher order approximation, without
recourse to hypothesis, or to the flow oonditions behind the ahook decay phase,
are introduced (section 6), amd a hypothesis for a higher order aprroximation
is suggested. On such a hypothesia, the ultimate form of the pressure-pulse
in a blast wave is derived (section 7); thn higher order remuilts from the
hypothesis are conpared with experimental observations (ssotion 8), amd show
promising agreement. Nevertheleas, even if these higher order results are
ultimately fourd to be sound, they do n>t apply, with prectical sooursocy,
oloser in than about 20 ft. from a sne-pound sharge of conventional explosive
at sea-level, where the shock peak overpressure is about one-sixth of an
atmosphere. It still remains true, therefore, as stated ty Bethe [1], that
“there is considerable danger in using these relations for moderate pressures
where the pulse has not yet reached its limiting form".

The real practical probdlem of explosion theory therefore remains, namely
to provide a consistent amd comprehensive working solution for the ‘middle-
distance' of moderate peak overpressures. For it is in the 'middle-distance’
[o£.16] that the oritical conditions of target response generslly oocur.

This paper, then, makes no ocontribution to the really important practical
problem, except in 20 for as it seeks to improve understanding of the ultimate
aaymptotic form of a blast wave, which must, of necessity, be an end-oondition
for the '‘middle-distance' groblem, It is clear that a proper understanding of
the end-condition is a necessary prelimimary, in any cass. It may, or may
not, provide the key also to a useful approach to the more practical problem.

2. Unat ron-homentropio flew with sphericsl symmetry

The equations of motion of the alr behind the lesding blast ahook in a
spherionl explosion, in repgions where no further shocks oocur, are!
from the oonservation of momentum,

u s+, +p/, = 0 (2.1)
from the conservation of mass,
Py + UA. ¢ PuL + 2Ww/r = O} ' (2.2)
and from the conservation of energy
Py + up, ~ a*(0, +up). (2.3)

p denotes pressure; p, denaity; a, sound-speed; u, particle velocity; =»
denotes distance from the centre of spherical aymetry and t, time; suffixes r
and ¢ denote partial derivatives; and air is assumed to behave as an ideal
polytropic gas, with equation of state

B-@e e
and sound-speed P (yp/p)*- (2.5)

3




8 denctes entropy, o, specifia heat at constant volune; and ¥, the ratio of

speoifio heats at constant pressure and conatant volume respectively, namoly
op/o,,iuukentohnthovum'l/smrdr; suffix o refers here to ;

oonditions in the undisturbed uniform atmosphere at rest. In addition .
® !

= ;
2ae (2.7) '

where R 1a a constant » and @ denotes absolute temperature,

Fundamental units are now chosen, defined hy the three quantities, atmospherio
pressure p,, atmospherio sound-speed a,, and an arbditrary length L, and the
following notation ia adopted,

xef, 3 a-t{s‘ -%]

2 ,.2%.

]
% %

kK

ta,
1-—-2- !.

L %
1.0, in generel P = P/[P], where P denotes ary physical quantity and [F] is

that combination of the fundamental units which has the same dimensions aa P,
In addition, the convention is adopt»d of writing 8 = (S - 8,)/R,  With this

notation end uaing (2.6), (2.4) and (2.5) mey be written

peslr=n 2 (2.8)
2= Y_‘_./(Y-') .'é, (2.9)

The equations of motion, (2.1), (2.2) and (2.3), may now be written in the new
notation, and p, £ may be eliminated from them ky means of (2.8) and (2.9).

The result 4s

R e S i LA
ﬁ_%gﬂh.h_%rﬂgh.a&+%_% - 0 (2.11)
8y +u8 =0 (2.12)

n which A* = (y = 1)/(y + 1),

Now depeniont varisbles @ and 2 are now chosen instead of u and &, such that
u s (1=¥)a=58), (2.13)
a = 1+2(aep), (2.44)

or, alternatively

s e e 0




a=-1)
A T ew (243)
pale-t  _u (2.16)

22t 201 - V)

from which it may be seen that a and # are, effectively, the Riemann funotions
whioch are oonstant along charsoteristio lines in unstesdy plane homentropis
flows The equations then reduce, sfter suitable manipulation, to

ey ¢ Mea-(1-208) a o ("")[';’e(!”)] .4 ’2(":(::‘?)].3_,_- 0 (2.47)

’t -l4- (1_ 2\')“”] ’_‘: . {a-8){1 ;7‘.(‘“")] * i ;x::; ._& =0 (2.18)

B+ (1 = ¥)a -ﬂ)ﬂz -0 (2,19)

In this form it i» seen that the aystem of equations is hyperbolio, and has
three families of charsoteristio lines in the (x, t)-plane. Along the positive
characteristic lines,

a¢ = [1+a-(1-2290at, (2.2)

. the intermediste integral rclation satisfied is, from (2.17),

PN CEY. ISER W CEY.) B (KR S CTY) [P AP

(Mea=-(1-22%8 & 2(1 « AY)
Along the negative charsoteristioc lines,
+(t=-(1=-22"a+plat =0, (2.22)

the intearmediste integrel relation satisfied ia, from (2.18),

R (RSN CY. B (PSS CPY) P
(1=(1-22%asp) & ;(, N ,})ﬂ-@. 0 (2.23)

and along the world-lines, or particls paths in the (r, t)-plans,

as

& = (1 -2%)(a-p) at, (2.24)
the relation satisfied ia, from (2.19),
8 = constant, (2.25)
3. The decaying upheriocal shock

When the leading dlast ahock from a spherical explosion has reached
diatances large compared with the sisze of the exploaive charge, or when the
peak overpressure immediately behind 4t is amall compared with the undisturbed
atmospheric pressure, it ia pertinent to ask whather the actual ocomditions
under which the energy was released by the 'detonation' ocontimie to have any
influence on the way in which the shock decaya, or whether, in fact, the process
of decay tends to depend less and less on the exact nature of the energy
yelease. The answer to this question entaila the atudy of an inoampletely

5
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formalated problem in which the governing equations are those of section 2 ' .

above, and the relevant boundary conditions are shose at the leading blast

shock, and the end-condition that the shock ultimately decays to sexo strength

as its redius inoreases indefinitely. The preblem is to drew conolusiona

from this data only, without reocourse to the initi.l conlitions of the .
detonation, or any other conditions, at any time, at boundaries nearer to the

ocentre of the explosion than the leading shock.

Let the position of the leading blast shick at any time be denoted Iy the
oquivalent relations R m R(t) or T m T(r)e In the notation of section
abave, the time-development of the leading blast ahock may be denoted ty
? = T(R), and it s convenient, when the leading shock is weak, to write this

relation in the form
T = R-e@® (344)
where ¢(R) is en unknown funotion of R, to be determined so far as is posaidle.
Then from (3.1), if dashes dencte differentiation with respect to R, ;

- R (3.2)

<
4s the Maoch mmber of the shock in tems of the speed of sound in the
uniisturbed atmosphere, and thus, for & weak shock, ¢’ is amall ocepared with !
unitys The shock corditions, giving the state of the air immediately behind
the blast shock, are (see, for example, (4], ppe T, 75),

R =i+ (e 1)

g - Q=200 -4 (.3)

RIS DN

Substituting for M, from equation (3.2), the following resilts are obtained,
R te20 02 31+ Merte0(e?)
ge20t=ae e (1=0)ets0(e?)

o)
% w1201 =2ANere (3-a0(1 = 2"e’0 4 0(e") ¢
awle 220 ¢/ & AR % o O(e?),
whenoe, fyom (2.15), (2.16) amd (2.4), .
'.‘ - { ’ ¢ ’ !
l-—;—v-o;(—i-_&ir)--zcot'oo(c’) _
8- ) . ' (3.5) j
8= LzT'z(q-x') 0(e*3) :
'8 - 0(e’?). j .

mumwmumromotmmmmmmmmmm R
notation adopted hare.
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The end-ocomdition, that the shock tends to sero strength aa the shook-
redius inoreases indefinitely, is given Yy,

R ¢ 0. (3.6)

The problem then ia to £ind, so far as is poasible, the solutions of the
governing equations, expressed characteristioally in (2.20) to 2.2{).
satiafying the incomplete set of boundary conditions (3.5) amd (3.6). Such
solutions will apply to the air-flow immediately behind the leading blast ahock,
80 far as no further ahocks oocur in the flow.

The method of solution adcpted here may be described as one of ‘anelytio
iteration', It was found ultimately to have been sed and used
previously to sowe extent by Heh. Bethe [1]3 Whithem [2] has adopted a
different method of solution. Both methods are, in faot, devices for
improving on the gross imperfections of 'accustio' solutions to the problem,
which fail on acoount of the divergence of the chareoteristics at infinity in
the pruper solution.

It 1s proposed to seek a solution only so far ss second order texms in ¢/

at most. Sinoe §, at the leading shock is, bty (3.5), only of the order of o3
and is constant along world-lines whose alope is of order ¢/, it followa that 8

is of the oxder ¢'3 at all points of interest and may be neglected so faxr as a
solution to second order terma in ¢’ is concernsd. Sinoe, moreover, by (3.5),
# 18 only of order ¢’? at the lsading ahock, whilst & is of crder ¢/, a first

) approximation to equation (2.21) is
alaz) = O,
This is the approximation introduoced by Bethe [1], amd gives
ar = constant = 2 ¢/ R,
or «w2e¢R/r (3.7

on the positive characteristic which overtakes the limiting shook at € (Pigure
| 1). Using thia remult, a first approximation to the equation of the positive
1 charsoteristio (2.20) 1s

: ‘gﬁ.z.;'g"}-d_t_ -0

giving, Yy integretion,
T3-26R,logr = & ~2 &R, gk, (3.8)

for the positive charssteristic which overtakes the leading shock at C.
{N.B. A1l logarithms are matural logarithms to base e.)

The negative charesteriatio (2.22) which intersects the leading shook at A
(Pigure 1) is, to a first spproximation, simply

Tet e R el = 2] -0 {39)

"If the charsoteristio which meets the leading shook at C outs this negative
oharsoteriatio at R, then, at B, to the sams order of adouraay,

2r-2R,+¢ w202 logr+ o -2 ¢R LogR, (3.10)

ty (3.8).
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Along this negative charsoteristio, therofore,

ar
L

2.5 = 2 lon By (0f By)" L% R JogR)!

%2
bty Aifferentistion with respect to Ry, keeping R, constant.
A first spproximation to the inmtermediate integrel relation (2.23) 4s
4 = (a-payr

or aPp) = o
whence, by integrution, and using the boundary condition (3.5) on # at the
leading ahock,

} 4

} 4
2e 8,
= = ar from (3.7)
R,

L4
&

- .ig‘o [2 log RA(‘O' &)' - WJQ
A

% Bo -
B ty (3.11)
. - -(—";ﬁ-&)—' (10g R, - 1og R,) .« (3.42)
Thus,
p o L9 (108 B - 108 2 + nigher ordar terms (3413)

z

8.

+ higher order terms (3.11) .




With these results the oyole may de repeated to a higher order of aoourwcy,
Tius a better approximation to the relation (2.21) is

dco[c-p-(i'-l')l']% =0

or afar) = [(p+ (1 - 2)a*) &2,
giving
}
-2 R -, / [l Bl er - Bl , 4002 Mt
-9
Henoe

o
-2 4R -G8 (*;zo)'[“"!o_-mz_ <s-u'>];
]

X z x
giving
B R R

+ nigher oxder terms, (3.14)

A better aprroximation to the equation of the positive charsoteristio which
meets the leading shock at C is

(1 ~as (1 -28)p+ a%) -2t = O,

giving
2¢ (g R -logp) 2(3 -22e*
d_x:[- ;Bo'z("".)('é.!o). !oz. - EoBc
| * ______g_&__(’ .k#)ﬁ.' ).]" at = 0,
E

which integrates to give
E-t-2¢,R, dogxe+ 201 -x')(-.;g,,)'[‘—"i‘-&-;:—"ﬂ-ﬂ

<203 - 2 R dop £ - (9 - 4y {2

me -2 elRyJog Ry - 2(3' 2¥)ef" R, Log By - (11 ~ 6¥)qy*R .
(3.15)
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Since S8, as given b{ (3.13) is only of the same order as the lower ¢rder terms
of a given by (3.14), it is not neceasary to improve the value of 8 in the ssme
way. A better approximation to the equation (3.9) for the negative
charsateristic which intersects the lesding shock at A is, from (2.22),

ar{1+ (1 =20)a) + 4t w» O,

Using the results (3.14) and (3.11), this lesds on integration to the equation

peg- o) GosRonlosn) | g g (1)

The required solutions are, thercfore, given by the four relationa (3.43) to
(3416), btut 1t still remains to examine what restriotions, if any, are imposed
on the, as yet, unknown function ¢(R), with the help of the end-oondition,
¢’R) » 0 as R +=, which has not yet been used,

4e Exoess ene and s8¢ _per unit area

From the solution for the decaying sphrical shock given in the last
seotion, it is possible to ocaloulate the impulse per unit area of the flow
behind it, at least as far behind it ms the flow is free from further shocks.
Thus {see Figure 1), the impulse per unit arem at a dittumoRA from the
centre of the explosion, from the time TA at whioch the shock reaches this
distance up to the time t, when the positive oharasteristio through G reschas

this distance, ia given by,

oty
I (»-~p,) at
Ta
™
or ;;‘f;.;. (@-1)at. (at)
(3N

Now since D ia on the positive charscoteristic which meets the leading ahock at
C, Yy (3.15) or (3.8)

Ry=$ =20 R,10gR = ¢ -2 ¢ R, logR,
+ higher oer terms (h2)
and, therefore, Adifferentiating with respect to Bo » keeping g‘ constant,
X Y ]
dpy  (S7Rg g )
’
R, %2

The relation (4.1) may now be integrated as follows:

= 2(¢f R,)'log R, + higher order terms. (4.3)

%
IV/(V'C) - 1} d,t_,by (2’8)

ive
»
I»

10.




i

{[1 . 2as a)](' « RN 1} at, ty (2.44).

&

[(i + 2 %"-& * ] at, by (3.13) amd (3.13)

F—

Ro
' e pl [
/[u . x-)%éa....}[‘% !‘Z:‘%’ -a(-.;w'm&] ®,,
B

by (ke3).
Thus

1= &(L_;:_ﬁ ¢l go'(loggo - log R,) + higher order terms. (4eds)

This is & result of great importance, for it allows, at last, some
consideration to be piven to the possible forms of the unknown funotion e(R),
bty examining what happens to the impulse per unit area I, given Wy (h.4), as
the point C on the leading shock tends to infinity.

First, in order to proceed at all, it is necessary to neglect the
poasibility of having an infinite rumber of ahocks, behind the lesding shock,
which overtake it. In the abaence of such an infinite array of secondary
shooks, it follows that, for all values of R greater than some R,, there is a

finite repion of shock-free air-flow behind the leading shock. It may be
remarked here, in suprort of this asswmption, that observations do not show any
secondary shocks at 1l which overtake the leading shook,

(__) Thers are then three possibilities for the form of the unimown function
e¢R).

First, if ¢(R) were a funotion much that

as R " w ¢'tR* Jog R * =

then, by (4.4), the L. 1se per unit area in the air-flow behind the leading
shock would also tend to infinity at some finite subsequent time, at all large
distances R, Por (see Figure 1) any further shock which intervened at a

time b=y oorresponding to a positive charmoteristio meeting the shock at a

finite point C, must necessarily overtake the leeding shock earlier than the
point G, and this is a posnibility which has already been negleoted. The
porsibility that ¢/2Rf log R * @, which leads to infinite positive impulses
per unit area at finite distances, 4is also neglected.

1.




Second, if ¢(R) were a funotion such that
as R°%, ¢’*R® 1oz R * 0,
then the function
¢4? R)(log Ry ~10g B,)
would be sero for Ry = R,

positive for I_i° > _l!.‘

and would ‘OME‘°"-

It would therefore have & maximm at some finite valus R, . However, bty
(4+3), at the point Dy corresponding to Gy,

| [t meeR cden )]

% % 5
to the arder of equation (4.3), since &!* Ri(20g Ry = 10g R,) has & maximm
value at Dy, and beyord Dy, d&/@o would becoms negative. This possibility
is therefore also neglected.

There remains, then, only the third possidility that ¢(R) is a funotion
nwh that,

asR *®, ¢'2RV1ogR < a finite non-sero quantity, say k%h. (4.5)

Then, as R * =,

13
"—-——To {%.6)
¢ 2R log*R

€<k logfR + K, (87)

and it is seen that this possibility is consistent with the end-ocondition that
¢ * 0 asR + = With this possibility, the expression (4.) for the impulse
per unit area becomes, “B'a"

L Q——’-éi-)i.- + higher order temms (48)
and thus as l_!‘ *w,
IR, - (1+2" Y2, (%e9)

Turning now to oonsiderations of the energy in the air-flow behind the
leading shook, the energy trensported across the surface of a given sphere
r =R, from the time T, (Figure 1) at which the ahock reaches this sphere up to
the time tp when the positive charsoteristic through O reaches this sphere,
oconsists of the energy of the mass transported across this sphere, together
witi: the work done at the surface of the sphere by fluid inside the sphere at
any time on fluid outside the sphere at any time. It is thue given by

12.
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)
a 2
;!!l.-,- =R = EA(.;.:_"_) [!;_... Atou¥(1e x')]gd&. (%410)
9

The integration may be performed hy methods similar to those used for
intomum the expression for I, and, without repsating the detaila, the result
'

4
B, o M) p et plog g, - 10 8y)
+ higher order temms. (4e14)
Thus, ty (be3), “Bo ‘.,
2 ) ’
5, - EUGE), (ba12)
ard henos the muprising result that,
as B‘ en, '™
in such a vy that
/B, « x¥(1 -2Vl (4a13)

Alternatively the energy E, should also be equal to the excess energy at
the time tn. over and above the atmospheric energy present before the arrival

of the blast, oontained in the spheriocal anmilus between the leading shook
r-R‘o.udthoIpm:--rD(mng\xoﬂ. This excess energy over

atmospherio 1is given Yy

R‘,

R A T ki < G r oy

ho
;!i'." «3 = Eﬂ%;-ﬁ Ll PEARR ST ) . ()

o
Zp
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Apgain, the integretion may be performed by aimilar mstixds to those used
previously, after deriving an expression for dx/dl}, along A'D (Figure 1), amd
the result is

B, - A 1).: s By %" Bg(log &, = 1og B,)
+ higher order tems (%.15)
in agreement with (4.11).
The argunments applied to the positive irpulse per unit ayea I, {(4), in

order to determine the most probable form of the function ¢(R), oould, of oourcs,
have been applied equally well to the energy E,.

S5« The limiting positive chareoterietic terminating the shock-decay phase nf
the air-flow behind & blast shook

In this seotion,scme further conseqences of the reatriotions, (4.5),
(8.6), (4:7), placed on the funotion e(R) in the previous section, are

Undex these restrictions, the equation (3.15) or (3.8) of the positive
characteristic which overtakes the leuwding shock at C reduces to

r-.t_-klogyhgigoohid\eroxdertm -too(;:). (5.1)

In the limit as R, + * then, thia pives (of. 3.15), for the limiting

positive characteristio which just fails to overtake the leading shock in
finite distance, the equation

r-t+k*1 - 22 = K. (5.2)

This may be compared with the result obtained by Whitham [3] for the
liniting chareoteristio, namely, in the present notation,

£=-2+0 (logxr) = K. (5.2a)

The method used here appears to show that the term of order log g’;
envisaped by hitnam has, in fact, zero coefficient, and that the next
surviving temm is only of order 1/r, and is determinable Yty the method used
here.

Thia limiting charncteristic (VI in Figure 1) divides the whole fluid
flow behind the leadins shock into two parts, of important significance. PFor
the tlow behind the liiiting characteristic VW cannot exert any influence at
all on the shook decay process, othaxwise than through the medium of a stock
overtaking VW, But ary shock vhich overtakes VW must overtake the leadins
shock in finite distance, since its slope must be greater at any point, than
the slope of the poaitive characteristio there. The possibility of an
infinite mumber of such shocka has been ruled out, and attention is being
confined to distances greater than that at which the last of such secordary
shocks, if any, overtakes the leading shook.

Henoe no flow behind the limiting characteristic VW can influence the
shock deoay proceas, and the shock decay process is therefore ocontrolled
sntirely by the flow between the leading shock AC and the limiting positive
charsoteristio Vi, This part of the flow will be called the shock-decay

phase of the blast vave,
The equation (3.1) of the leading shock is, by (4.7),

g-gokug*B_.xomywromatm-. (5.3)

1.




The peak overpressure immediately behind the leading shook is, by (4.6)
and (3.4),

- - + A
P-1 éﬁlza‘_il + higher order torms, (5.4)

The duration of the shock~decay phase st r = R, (AZ in Pigure 1) is given
by

no=%-n

- [B-A “K ekt - x')/qz‘] -2
<'308 % 18 on the limiting oharecteristio (5.2).
Thus, YWy (503)3

ek lpg*& + higher order terms, (5.5)

Behind the leading dlast ahock, the particle velocity u is 2.1 K
(3.1h) and (4.6), ' u is, ¥y (2.13), (3.13),

o= (4= hgigo + Mgher order terms {3.6)
and the overpressure (z « 1) is, by (2.8), (2.14), (3.13), (3.14) and (4.6),

p=1 = k(1 +¥)/x log¥ By + higher order terms, (5.7)

At the limiting chaxacteristic, (3.14) gives, as R, * =,
a= ﬁ.; + possitle higher order terms, (5.8)
and (3.13) gives, as R, « =,

A= - -):—: + possible higher order terms. (5.9)

Thua, at the limiting characteristioc, the overpressure,
p=1 » (14+2A")(a+p5) + higher order terms,

is of lower order taan 4/rtf, and the particle velocity is

e (1=-2')a=5) a l‘-'-%‘-‘.—*')-.pomm higher order terms. (5.10)

§ince, at the limiting charmoteristio, the overpressure is not much
different from gero, the siwok-decay phase as defined here is relatively not
much different from the positive overpreasure phase of the flow, However, if,
in faot, the overpressure at the rear of the shock-decay phese is still
greater than zevo, it is possible for a secondary shock, behind the limiting
characteristic, anu never overtaking it, to enter the positive overpressure
phase, inorease the overpreasure and thus prolong the positive overpressure
phase, In oxiﬂ.nsiom from corventional explosives, such a secondary shock is
observed [5, 6] and its inception and development have been investigated

{7, 8.
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To coimlete the results for the shock-decay phase of the motion it may be
repeated that the irpulse per unit area in the shock-decay phase (4.8) is

2
1= 8 = k2 o higher order terms; (5411)

and the excess eneryy over atmospheric in the ahock-decay phase (L.16) is
. Iy 4
5 = M-L{;—"J- R + higher oxder terms, (5.12)

6, A _molution to higher order of scourscy

The considerationa of section i led to the conclusion that the only
restriotion on the funotion c(j_!_) for a spherically decaying shook is

k

or "¢ + klogtReK.

There ssema therefore no possibility of determining the function ¢ more
precisely without appeal to the initial conditions of the explosion, or to
boundary oonditiona within the leading spheriocal shook, or without making some
Wm‘i.-

The boundary conditions at the leading shock (3.5) are expresnible aa
pover series in ¢’ when ¢’ is amall. On the other hand, the fundemental

length L is 30 far arbitrary, and if, for instance,a different length L, were
used, and R, ia written for ML,,

gt R, = 208t {{-‘-} - [l.og R+ dog {i‘-‘:]*

10, 1 -
- 103%8[1 * —é&l%gl -2:1%‘.&;1 + nu-] (6.1)

80 that an expansion in powers of 1/log R would be introduced into the
expressions for ¢ and ¢/, by a change in the funiamental length L.

On this basis, the hypothezia ia made that, for spherical explosions, ¢
may be represented hy & double series of the form

e = kh*a'ﬂh"*n‘llo""’a. [YX XYY

. é h(log* R

. 1-‘1; £,(0g¥ B)

LYY YT TY YN (6-2)

in which the origin of time has been choaen so that K n 9.

It follows from this hypothesis that, at large distances R, an attemt to
derive a higher order approximation than from the first tens only of ¢, by
inoluding & finite mumber, say two, of bigherorder terms, must be directed not
tovmnla including terma of the oxder ¢’ and ¢’f timos the leading term btut
ruther towards an approximation of the form

16.
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¢ » Xlog"R -mlogF R -21057"" 8. (6+3)

Now L, the fundamental length, is arbitrexry, and it follows from (6.1)
that L may be chosen definitely so that the coeffiocient m » 0. With this
definite value of L then, the approxiration beoomes,

‘ -kloz*a{ ——-1——-} (64

and all further results given are besed on the above hypothesis, and with this
definite choioe of L. The expression (6.4) contains, then, three constants,
L, 1, and k which, if the hypothesis is justified, should be determinable by
oomparison with experimental observations.

With the form (6.4), and negleoting terms of higher order than 4/log? R
times the leading texrm as well as all terms of order ¢/ or higher, compared

with the leading term, the results for the shock-decay phase of the blast motion
at a distanoe R from the cenire of explosion are:

- X A_l.
¢ zgug*g_{“klos'g}’ | (6.5)

Shook peak overpressure (5.4),

k(1 +2") 31
P-1 1 Ll T 6.6
- -B.lns B.{*klog‘&}' , (6.6

General’ overpressure in the ihock-decsy phase (5.7),

k(1 + ¥') .

p -1 - 1 -——21—-—— .

= R log” R, { " 1°8'§°}' (6.7)
Duration of shock-decay phase (5.5),

Ts= k-logi'gp -Hi‘;;-i : (6.8)

Shock-deday impulse per unit area (5.11),
I = ¥*(1+2")/2R with no tem in ¥R log®R; (8.9)

Equation of positive characteristic which overtakes leading shock at 8, (3.15);

klogrx
r-t- = b2 .~ S
= - J.Dgil_!o {1 "k hg.&} 108,’.& H (6.10)

Relation between peak overpressure, shock-decay impulse per unit area, and
duration of shook-decay phass, (6.6), (6.8) and (6.9),

B -1)r = 2_:_{1 'i":%r' . | (6.11)

7. The form of the ssure 86 _in a spherical blast mave

The results giver in the previous section 6 enable an expression to be
obtained, for the first time so far as the author is aware, for the ultimate
preasure-time relation behind a spherical btlast wave, at sufficiently large
distances from the centre of the explosion.

17.
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Yor, from (6.6), the pesk overpressure at the shock, when it is at
distance R, , is

s o KA+ 31 .
SN TN R

and subsequently, behind the shock, at the seme distance R, from the centre of
the explosion, the overpressure is generally, Wy (6.7),

Pt = k“’;.) 1+ 51. } (7.2)
B, log? By L k 2og*R,

at a time ¢ (see Pigure 1) at which the positive characteristic overteking the
leading shock at O reaches the distance R,.

Sinoe D is on the positive characteristic which overtakes the lealing
shock at O, by (6.10),

e T (73
Ry = - .
4 ‘5 108 R k 108 bg’lln—o ’ . 7 3
vwhilst if T is the shock-decay duration AZ (Pigure 1), by (6.8),
r=xety fi -l (7.4)

ard the relation between R, and I, at the leading shock is, by (3.1) ana (6.4),

R, -7 = klogFR [1 - —2 .

Prom (7.3) amd (7.5), by subtraction,
108*8,\ 1 . 3 log*’* R, alos"'_,_}

* .3
logigo log:'lg* _ 10 "l-n-o 198".8

&-&-kh#&{-

(7.6)
Thus, from (7.4),

{_{n'&}_hgﬁr&{* A_.___w }

I logf B, || k log"R, k logR, logR, K log' R,
(7.7)
vhereas, from (7.2) amd (7.1),
p-1 1og¥R
P-1 " ,}_A 1o - 2L (7.8)
- og® Ry klog R, klog" R,
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s, from (7.7) and (7.6),

-1 -} 11 It
P -1 - T -klog'n *klogR log R
- = = = =

-3) 41 H-L '
- { —Q”t*}{mrg;[ 23 }]} (7.9
t0 the present order of spproximation.

If, in the present ocontext, time is measured from the instant the shook resaches
the radius R, (7.9) may be written simply,

Pk %}[ ﬁ{ag_ﬂ (7.10)

This may be compered with the empiriocal form first suggested hy Friedlander
(9], namely,

:::: . { -;.}.'YT (7.11)

cr with variations on the Priedlandor form [of. 5, 6] such as

P'Po - .t 'Oﬂ,T
oo, { -i}o e, (7.12)
P-po _t OI-O‘VT

or 7Ty, {1 &.} Cat i (7.43)

In the relations (7.11), (7.12) and (7.13), o, and o, are constants, and T is
e duration of the positive overpressure phass. v

To obviate the experimental difficulties associated with the measurement
of quantities connected with the entire positive phase ur the entire shock-
decay phase as introduced in seotion 5, it is oconveniimit to define a general
time-interval T¢, after the arrival of the leading blast shock at a given
radius Ry, as tho elapsed time at which the overpressure has fallen to a
fraction £ of its peak value., The positive characteristic through the
particular point Dy (Pigure 1) correspomiing to (R,, I, + 7p) overtakes the

leading shock at the perticular point O, satisfying, bty (7.8),

3
log” By { 31 31
= 1 - .
e U km,&}, (7.18)

whilst, from (7.6),

% { 1°8*’-‘A } 1 3 log*’/* R, 4 log’’* R
s k log“ R, {1 - - 9 A . A
I A 108'5‘ Ro, log’’® Ry * log*’? R, log®’? Re .

(7.15)
Prom (7.14) and (7.15), to the present order of approximation,
, 1
Te = k(1 - f) logt R, [ T O Zf)']. (7.16)
19,
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0f paxrticulaxr intexest is the special case when the.freotion £ has the
value fy = (Y3 = 1)/2. In this partioular case

(1e28)® = 3 (7.47)
and
k(3 - ¥3)
I = 5 10!*&{1 'm'%.l—n_:} ’ (7.18)

T
-

21
e } (7.19)

ahd (6411) may be written
®-11, = G- (7.20)

The relation (7.20) appears to bs the most useful relation of its dnmi, for
further analysis gives, in gensrel,

- k*(1 + 22)(4 - £* _____6_1!_:_ (7.21)
it EN ""Ynsy |’
? a8 a generalisation of (5.11), and tius
®-1I = 1,220 =021, (7.22) .
- (1+92) klog'B* !

as a generalisation of {6.11). It is olear from (7.22) that the special ocase
£ = £, has no particular merit so far as this relation is ooncerned, and that

there is no other ial value of £ (apart from the trivial exception £ = 1)
which will reduce (7.22) to the form

®-1) 1

oonstant,

Finally, the generalisation of (5.12) is obtained as,

!‘f - .‘i’.@."_)»‘ 1= ’l) B‘ [1 -;—i.:‘:._f:.g]o (7.23)

8. Comparison with experimental observations

In order to facilitate comparison with experimental observations, it is
desirable to derive some further results of the theory in terms of actual -
physical quantities rather than the reduced non-dimensional quantities which v
have been used in the development of the theory. v

Thus, equation (6.9) may be written

Kt o 2IRa, (8.1, L

P,(1 +a%)

and equation (7.20) may e written

st o (Bo1) TeRao (Y3 41)
(1+) 73

m. ' :~

(8.2) L
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inwhioh @ = 1) =« (P = po)/po is the peak overpressure measured in
atmospheres and is left in the reduced notation for aimplicity.

®-1) R = k(1 +2")(10gR),

and this may now be written
B-1)7Ra3

4e 4
XL (QlogR =loglL) = o) (8.3)
Similarly, fxom (6.8) and (/.18)
A s )
z s k™ log R .
and this may now be written
3 o8¢z o
k"' (logR = logL) = I %(zr‘ ) . (8.4)
Eliminating KL between (8.3) and (8.4) gives the result
logL = logR - 2{2=-Y3) I.’.h_(l.ﬂ.:.). (8.5)

2 R@ -1) 7,

Finally, when these five relations have been found to yield oonsistent values
of k and L, by oomparison with experimental observations, the following three
relations may be used to determine 1, and thus further assess the consistency
of the agreement between theory and obsexrvations.

Q'1)El°8'"§. klbg.B
1l = 3(1. . h.) 3 . (806)
1 = klog'R -7 log’*R, (8.7)
and from (7.18)

l = khg'g-‘(ﬁ*.‘)
3 3V3

Potter and Jarvis [5, 6] have made observations of exploaions from bare
spherical charges of TNT and RDX/TN? 60/40 which are sufficiently ocomprehen-
sive for a comparison, on the above lines, with the theory developed here,
Their regults are given in terms of the oommon method of scaling, using a
faotor W3 (W = charge mass in pounds). Here, W is put equal to one pound in
their results, so that, in fact, their observations are sceled to one pound of
exp.osive at sea=-level, and the oonparison is made on this basis. On thias
soale, their observations extend from about 4 ft. to 50 ft. from the centre of
the explosion, and their peak overpressure measurements were fitted, over the
complete range, by the method of least squares, to the form

P=1 = &R + YR* + o/RO,

Potter and Jarvis have, of course, analysed their records in terms of the
usual positive overpressure phase. In the case of RDX/TNT they observed a
secondary shock which entered the positive phass at about 15 f£t. from the
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centre of the explosion, and at greater distances their quoted values of
positive duration include a small extrapolation to give an estimnte of what the
positive duration woull have been in the absence of a secord shock. Their
values of positive impulse per unit area, however, include only the impul se
in the primary wave. The comparison mede here rests entirely on the
assumption that these results of Potter and Jarvis may be taken as a good
approximation to values for the shock-decay phase introduced in the present

theory.

It may seem surprising that the results of Potter and Jarvis are
sufficiently comprehensive to intiude measurements of Tyt (7.18)s In fact,

Potter and Jarvis have measured, on their records, the time 7o, (7.16), for
the fraotion £ = 1/e. By a remarkable mmerical coincidence,

J— = 2 = = .
- 73-_-7 SR 2.73205,

as compared with e = 2,71828, or
(1+23)*" 2 3.0129,

as compared with (1 + 2£,)% = 3.

The values of 7 ,, ,(which they name the 'decay-constant'), given by Potter amd
Jarvis, have therefore been used as values of 7,. The author, of course,

disagrees violently with their assertion that 'the choice of the factor 1/e is
quite arbitrary, and 0.5 or 0.25 would have been almost as good'!

Table (8.1) shows the results for one pound of RDX/TNT 60/40 at sea-level
Columns (6) and (7) show the two values for k:L? given by the relations (8.1)
and (8,2). Column (8) shows the value of L given by the relation (8.5).
Figure 2 shows the plots of the relations (8.3) and (8.4), on semilogarithmic
graph paper, and the straight lines corresponding to the values k = 0.716,

L = 3.8 ft. are also dram, Finally, using these values of k and L, the three
values of 1 given by the relations (8.,6), (8.7) and (8.8) are given in

colums (9), (10) and (11) of Table 8.1, being denoted respectively by 1(P),
1r) amd 1(r,).

Table (8.2) and Figure 3 give the corresponding comparison with the
results for one pound of TNT at rea-level, and, for TNT, the values k = 0.6025,
L = 4.5 feet have been chosen. At the greatest distances from the centre of
the explosion, the observations naturally become less reliable, and the least
squares fit of the mean curve by Potter and Jarvis, being chosen as an
optimum over the whole range of observations, is probably not so good at the
greatest distances, as a best fit over a shorter range of larger distances.
It is not surprising, therefore, that the good agreement showmn in Tables 8.4
and 8,2 and Figures 2 and 3 up to distances of about 35 feet, is not so0 well
mainteined at 40 and 50 feet. It appears that the fitted moen values of
(P - 1) and I are the least reliable, and amended values of these quantities
are showm in brackets in Tables 8.1 and 8.2 and Figures 2 and 3, to give some
idea of the changes in these quantities which would give agreement with the
theory given here. Those changes are quite small.

Finally, as an alternative tn (8.2), the relation (7.20) may be written
in the fomm,

(® - p) ree = (3-V3) I, " (8.9)

and thus conatitutes an overall check on the hypothesis of section 7, when
tested apainnt experimental observations.

The values of (P - p,) 1;/(3 - ¥3} 1 are given in colum 42 of Tables 8.1

end 8.2, It is seen that, in both cases, as R inoreuses, this quantity tends
rapidly and monotonically to unity.
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9. Remarks

(a) It needs to be streased that the hypothesis made in section 6 and the
consequent resvlts piven in seotions 7 and 8 are not necessarily sound, and
other similar hypotheses need to be investigated before any fimm conclusions
can be drawm. From the results given in section 8, however, it is seen that
this hypothesis appears to be in reasonable accord with experimental
observations, perticularly in the sense that the observations used are far
more extensive than the minimum requirements for determining only three
constants L, k, 1, and yileld consistent values whenever the oonstants are
determined by alternative methods from different types of observation. On
the other hand, the solution which is being compared with experiment is ean
asymptotic on2, and the vital determination of the constants depends
therefore on the measurements at large distances, where the obsexvations
are naturally at their weakest. Jor this reason the numerical constants
chosen to fit the observations, in section 8, should not be regarded as

determined to any high order of accuracy.

(b) It is of intereat to compare the fit with observations of the higher
order aaymptotic solution proposed here with the corresponding fit of the
‘gero order' solution involving only the leading terms. Kirkwood and
Brinkley [2 et al ], who gave a solution to the whole development of a
spherioal explosion by making a physical assumption, obtained the amymptotioc
solution for the peak overpressure from the limiting form of their
differential equations, as the leading teym only of the solution given here,
i.e. in the present notation

k,(1 + %)

R, log? B, o1

P -1

in terms of a fundamental length Li, where Ry = R/Lqe

The corresponding solution for other quantities to the same order of aocuracy,
by the methods given here, would thus be

. k(1 + %)

3 =, (9.2)
T = Xy log7 R, (9.3)

and, in fitting this solution to experimental observations, only two constants,

k¢ an’ Ly, have to be determined. Kirkwood and Brinkley do not disouss the
Wwsi’ i significance of their length Ly, but fit the solution (9.1), (9.2),
9.3) asymptotically to the mmerical solution of their equations closer in,

and thus derive definite values for k, and Lye In fact, when written in the

form
P =P - (kJ-‘c)(" + )

Py R (log R = log LJE ’ (9:4)
1a, (ky)*(1 + A7)

po = 23 ’ (905)
ra, = (kily)(logR - log B (9.6)

it is clear that thias solution can be used to detennine definite values of k,
and L, by fitting to experimental results or caloulations, and thuis the form
of the solution (9.4) to (9.6) involves inherently some definition of a
particular L,, different from the preoise definition of L used in the
hypothesis of wotion 6,




Since equation (9.5) is identioal with (8.1), the fitting of this solution to
the seme set of observations should give the sames value for kIn As obtained in
section 8 for kL.

For oomparison, some values of k,L, obtained by Kirkwood and Brinkley,
both by choosing the initial data of thelr solution to fit experimental data,
and by choosing initial data from the thermodynamic properties of the
sxplosive, are quoted here,

Reference 2. 1 lb. Cast Pentolite .

From peak overpressure solutio kiL} = 8.73 £t y
(IJ' L] 8.09 fto. R,l 00365
Prom positive impulse solution kLY = 8.53
Reference 2. 4 1lb, Torpex II ‘ .
From peak overpressure solution l(dh, = 9.21 £tf )
L| " 8.32 fto, kql 0.365
From positive impulse solution KL} = 8.85 £t
Reference 17. 4 1lb. TNT .
From positive impulse solution KLY = 7.97

From positive overpresswe solution KiL§ = 7.96
(Ly = 8.41 £5., kyaV.335)

Reference 18. 1 1b. TNT .
From positive impulse solution kﬁL. = 7.5

From positive overpressure solution KiL{ = 7.49
(Ly = 8414 £to, ky= 0.336)

() It has frequently been suggested that a blast wave may ultimately tend to
the form of an N-wave with a second shock about equal in strength to the
leading shock. The development given here suggests, on the other hand, that
no oonclusions oan be drswn about the air motion behind the limiting
charecteristic, on the strength of the governing equations and leading
boundary oonditions only. Experiment [5,6) shows that the shock corresponding
to the second leg of the N is consistently very much weaker than the leading
shock. In the case of a conventional explosion, moreover, the second leg of
the N is the third shock, and the shock next behind the leading shook is

in the middle of the aloping pert of the N. It is this seoond ahock
which [of. 7,8] originates at the surface of the explosive and is reflected
outwards again after implosion at the centre. This type of shock is peculiar
to oconventional explosives, and consequent upon the infinite pressure gradient
immediately behind a spherical detonation wave.

It is the author's opinion that secondary shocks are not essential to the
ultimate forms of blast waves, and that their prusence or absence is dependent
on the nature of the explosion, or,more precisely, on the motion of the
fexplosive produots' which act like a piston in csusing the explosion. As
remarked above, the second shock from a oonventional explosive is peculiar to
this ¢, of explosive, In atomic exploriona no secondary shock is observed
at all (15, page 50, footnote]. The author believes that, if an explosion
were caused by a spheriocal piston which returned to its initial position, a
trve N-amve would ultimately form, just as, in the corresponding case of a
finite body in steady supersonic flow, the bow and tail shooks ultimately fm
an N-vymve far out from the body. In this latter case, the shape of the body
determines the 'piston curve', which, when the body is finite, returns to its
initial position.
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